
NASA Contractor Report 189710

ICASE Report No. 92-45

J

ICASE
FULLY NONLINEAR DEVELOPMENT OF THE MOST

UNSTABLE GORTLER VORTEX IN A THREE

DIMENSIONAL BOUNDARY LAYER

i

S. R. Otto

Andrew P. Bassom

Contract Nos. NAS1-18605 and NASI-19480

September 1992

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, V'trginia 23665-5225

Operated by the Universities Space Research Association

Nalional Aeronaulics and

Space Administration

Langley Research Center

Hampton, Virginia 23665-5225

,-,4

I

t_
Z

Ul
t_

U

,,t
3,
¢%1
O

t'..l
r-,l

O





FULLY NONLINEAR DEVELOPMENT OF THE MOST UNSTABLE

G(SRTLER VORTEX IN A THREE DIMENSIONAL BOUNDARY LAYER

S. 1R. Otto*

I('ASE, Mailsto t) 132('

NASA Langl,T 1Rese;_rch (',rater

Haml)t(m, VA 23665 5225, USA

Andrew P. Bassom

Del)artnlent ()f _[athenlatics

University ()f Exeter, North Park Road

Exeter, D(,von. EX4 4QE, UK

ABSTRACT

In this pal)er we investigate tile nonlinear develot)ment of the most unstable

Gi_rtler mode within a general three-dimensional boundary layer upon a suital)ly

concave surface. The structure of this mode was first identified by Denier, Hall &

Sedd()ugui (1991 ) who demonstrated that the growth rate of this instability is O( G _-)

wh,'re G is the GSrtler number (taken to 1)e large here), which is effectively a ni('asure

()f the curvature of the surface. Previous researches have described the fate of the

most unstal)le mode within a two---diniensional 1)oun(lary layer. Denier & Hall (1992}

discussed the flflly nonlinear development of the vortex in this case and showed that

the nonlinearity causes a breakdown of the flow structure.

The effect of crossfl()w and unsteadiness upon an infinitesilnal unstable mode was

(qucidated by Bassom _ Hall {1991). They demonstrated that crossflow tends to

stal)ilis(" the most unstable G6rtler mode, and for certain crossflow/fre(luency coral)i-

nations the G/Srtler mode may be made neutrally stable. These vortex configurations

naturally lend themselves to a weakly nonlinear stability analysis; work which is de-

scribed in a t)revious article by the I)resent authors. Here we extend the ideas of

Denier and Hall (1992) to the three-dimensional boundary layer prot)lem. It is f()un(t

that the numerical solution of the fully nonlinear equations is 1)est conducted using a

method which ix essentially an adaption of that utilised 1)v Denier and Hall (1992). The

influence of crossflow and unsteadiness upon the 1)reakdown of the flow is descril)ed.

* Research was supported by the National Aeronautics and Space Administration under NASA con-

lra(:ts Nos. NASI-1S605 and NAS1 -19.180 while the author was in residence al the Institute for ('omputer

.\pplica.ti,ms in Science a.ttd Engineering ([CASE), NASA Lan_;ley Research ('enter, [{&lll|)ton, MA 27_)115





§1 Introduction

The aim of this article is to fllrtlwr o,lrunderstandin< of the effects of unsteadiness

and crossfl()w Ul)()n rite fltlh" n(mlinear developnwnt of unstable G6rtler m(_des. Tlw

initial derivation of the governing equations for these modes was giwm by G6rtler

(1940) whos,' results were modified by Hammerlin (1956). These early works ign()red

nonparalM effects present (hw to houndary layer growth and Smith (1955) added

terms in an attempt to r('ctify this deficiency. Until recent years it was unclear as to

the iml_ortance of the nonparallel terms; this question was resolved bv the results (,f

Hall (19S2 a,b, 1983). In this series of papers Hall showed, using a ,'ombinati(m of

asymptotic and numerical techniques, that for order one wavenumber vortices there is

no unique neutral linear stability curve. More precisely, the stability characteristics of

such wavenumber modes are entirely dependent upon the initial form and location of

the disturbance. However for small wavelength vortices a unique neutral curve does

exist and on this curve the vortex wavenumber _" is O(G¼) where G is the (assmned

large) Ggrtler nmnber. For flLrther reading concerning the development of the stability

theory for GSrtler vortices the reader is referred to Hall (1990).

The most unstable Ggrtler mode (i.e. that infinitesimally-sized vortex which has

the largest growth rate) was Obtained by Denier, Hall K: Seddougui (1991) and Tim-

oshin (1990). By considering the stability properties of the essentially viscous modes

of wavenumber O(G ¼) together with those of the inviscid modes of O(1) wavelengths

it was possible to identify an intermediate wavenumber regime in which the vortex

growth rate is largest, These unstable modes are confined to a region of depth of

O(G-_) and possess growth rates of size O(G_ ). The stability properties of O(G_)

wavenumber vortices are deduced by soh.'ing a sixth-order ordinary differential system

with appropriate boundary conditions and the solution of this system reveals that the

unique most unstable mode has wavenumber k = 0.476G_ and growth rate 0.312G_.

To (late there has been relatively little attention paid to the nonlinear stability

properties of G6rtler vortices. Perhaps the first work was performed bv Aihara (1976)

who attempted to describe the nonlinear evolution of GSrtler vortices using parallel

arguments. Later calculations by Hall (1988) remedied these defects and showed that

as O(1) wavenumber modes evolve downstream so the energy of the flow concentrates

itself in the flmdamental and mean flow correction. This suggests far downstream the

flow can be adequately described by a mean field/first harmonic structure and such a

configuration was elucidated for short wavelength modes using both weakly nonlinear

and flllly nonlinear approaches by Hall (1982 b) and Hall & Lakin (1988) respectively.

A fuller description of the nonlinear stability of G6rtler modes may be forum in

Denier & Hall (1992). In that paper the authors argued that in a number of practical

systems, especially where significant curvature occurs such as the case of flow over



turbine blades,one would expect the small localized surface imperfections may well
trigger the most unstable linear Ggrtler mode. (This conclusion relies on the r_'_ult
of tile linear receptivity theory given by Denier, Hall &: Seddougui (1991).) This
motivated a careflll study of nonlinear evolution of the most unstablemode which was
tackled in the following way. Denier & Hall (1992) took an arbitrary form of initial
disturbance at a typical streamwiselocation, say z = 1. By integrating the linear

form of the vortex equations over a long distance, up to .r = 101. a flow profile was

obtained which is dominated by the most unstable mode described by Denier et aI

(1991). From _r = 101 onwards the flfll nonlinear equations replaced the linear ones

and the most unstable vortex mode was marched further. Typically 8 or 16 harmonics

of the flmdamental were retained during this calculation. It was found that at a critical

point the flow contains a region of reverse flow and the analysis is then no longer valid.

Denier & Hall (1992) interpreted this breakdown as being responsible for the vortices

moving away from the wall and into the core of the boundary layer.

The effect of crossflow and unsteadiness on the most unstable Ggrtler mode was

discussed by Bassom ,_k Hall (11991). The primary result arising from this work was

the demonstration that a relatively small crossflow could completely stabilise the most

unstable mode. Additionally, by allowing for vortex unsteadiness, it was shown that

suitable combinations of crossflow, vortex frequency and wavenumber could lead to

neutrally stable configurations. A weakly nonlinear stability analysis pertaining to

such configurations was conducted by Bassom & Otto (1992) who derived classical

"Stuart-Watson' (1960) type evolution equations for near-neutral modes. They con-

eluded that the weak-nonlinearity has a stabilising effect and derived equations for

the supercritical equilibrium amplitudes.

The results of Denier & Hall (1992) and Bassom & Hall (1991) provide the mo-

tivation for the current study. Within a two-dimensional boundary layer the effect of

nonlinearity on the most unstable mode tends to lead to a fnite distance breakdown

whereas crossflow appears to stabilise the flow. With these two mechanisms tending

to have opposite effects it is clear that in many practical situations, where three-

dimensionality is undoubtedly important, it is of great interest to determine which

of these two conflicting behaviours dominate. We attempt to answer this question by

considering the full nonlinear vortex equations and employ numerical techniques which

are similar to those used in Denier & Hall (1992) but modified in certain ways (detailed

later). These improvements significantly speed up the computations and allow us to

obtain a greater range of results than those found by Denier & Hall (1992).

The structure of the remainder of this article is as follows: in section 2 the flllly

nonlinear equations are derived and a brief description of the numerical procedures
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used are outlined in section 3. Details of the results are presentedin section 4 an¢lin
section 5 somel_riefconclusions are drawn.

_i2 Formulation

As in Hall (1985) we consider a boundary layer flowing over the cylinder _) = 0.

-,:v. < 5 < :x: where the 3 axis ix a gonerator of the cylinder. 0 measures the distam'o

normal to the surface and .i" denotes the distance along the surface. The Reynol,ls

mmfl_er R,, and G6rtler mmfl_er G arc defined by

"(1L i

R_ - G = 2R7 &
b'

where _'0 is a typical flow velocity in the )-direction, L is a characteristic streamwise

lengthscale and z_ is the kinematic viscosity of the fluid. Furthermore the curvature of

the cvlinder is supposed to be 1. g't0 (T) and with these definitions _ - L/b, where b is

a typical radius of curvature of the cylinder (Ggrtler vortices are typically observed in

flows over concave surfaces which corresponds to the choice "to > 0 ). The Reynolds

mmfl)er is supposed to be large whilst 6 is sufficiently small so that as ¢_ _ 0 the

I)arameter G is fixed and is of order one. The basic three-dimensional boundary layer

is taken to be of the form

( , )( ('))u=U0 u(X,Y),R-_,(X,Y),R-_A*u,(X,Y) 1+O R[ _

1

where X = 2,/L and Y = (IR_/Z and the crossflow parameter A* is of order one.
[

It is convenient to define the scaled spanwise coordinate Z = 5R_/L and let T be

the temporal variable scaled on L/Uo. The basic velocity profile is perturbed by the

quantity

( , , )U (r, X, Y, Z), R_ -_ V (T, X, Y, Z), R[ _ W (T, X, }, Z) ,

1

and the pressure field by R-_P (T,X, 1", Z). Substituting this flow form into the

continuity and Navier-Stokes equations yields the system

Ux + I,_,- + Wz = 0, (2.1a)

--UT + Uyy + Uzz - riyI" - _U.\'-_xU - FUy - A*¥U:
(2.1b)

= UUx + VUy + WUz,

--I"T + l_'y + VZZ -- G'_gU - Py - iTVx - gxU - gl.'y - gyV - A*_I._

G\U2 (2.1c)
=UI.[\-+VI'r+WVz+_- , ,
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-_I_ + Wy y + Wzz - Pz - T[Wx -- A* u=x U - -6Wy - A* "_'TFy -- A*T_W:

= UWx + i'Wy + WWz,
(2.1d)

1

where terms of relative order O(H,7 "_) have been neglected. It is worth noting at this

point that the linearised system studied by Bassom & Hall (1991) is obtained lw setting

the right-hand sides of (2.1 b-d) to zero whereas the nonlinear equations oxaminod

by Denier & Hall (1992) to deternline the development of steady nonlim'ar vortices in

two-dimensional boundary layers can be retrieved by setting A* and Or equal to zero.

\Ve now invoke the scalings proposed by Denier et. al. (1991) who demonstratod

that in high G6rtler number flows the most unstable vortices have O(G-k ) vcavenumbers

and are confined to a layer of thickness of O(G-}) adjacent to the cylinder. Theso

modes have a spatial growth rate of O(G} ) and we use the results of Bassom & Hall

(1991) who illustrated that the three-dimensionality of the basic flow significantly

affects the two-dimensional stability results once the scaled crossflow parameter A*

becomes O(G a ). Therefore it is convenient to define the O(1) crossflow parameter ,_

by
A* = G}A. (2.2a)

To reflect the fact that the vortices are confined to a region of depth O(G- } ) adjacent

to the cylinder we introduce the O(1) boundary layer coordinate g defined by

1

= G_t', (2.2b)

and in this layer the basic flow may be expanded as a Maclaurin series of the form

2 a .

1G--gtq2(X)y2 + _G-_pla(X )y + "'"u = G-_Itll(X)g + _ (2.2c)

1 1 __--2 1 __a

if, = G-_Iz21(X)g + _G s#22(X)_] 2 + -_G slt23(X)g a + ... (2.2d)

To determine the form of the vortex disturbance we appeal to the findings of Bassom

& Otto (1992) who identified the crucial perturbation size at which the governing

equations become flfily nonlinear (although these attthors nmde no attempt to solve

these flflly nonlinear forms). The disturbance forms are then

( 2. )U = G-} U0 + G--_U1 + G-g[2 + ''" ,

w= (w0+ a-lw, + +...),

G_ .(1_'5+ G-}'t,'1 + G-_I,_ +...).Iv'=

(2.3a, b)

( )P=G_ Po+G-_P_+G--_P2+" ,

(2.3c, d)

where U0, l,_, $'I_, Po, f-q .... etc. are all fimctions of X, y, the temporal and the span-

wise variable. It is now convenient to implement the result of Bassom L: Hall (1991)



that the leading order behaviour in the downstream coordinate is purely oscillatory

and we do this by introducing tile coordinate and temporal variations given by

X = G- ._,r, Z = ,_,r + G- .{:, T = G'-,_, t, ! _'9.4- i

where 3 = ]\t_,,1/p i1. This then implies that the streamwise and spanwiso derivatives

t)ecolne

0 _G_ 0 _ c) 0 +G_ 0
c)X O,r :IG_ 0__ " OZ 0--7, (2.4t,)

The desired governing equations are obtained by substituting (2.2)-(2.4) into oquati¢ms

(2.1). Leading order terms in the momentum equations yield that W0 = 3U0. Next

order terms in equation (2.1 b) give the first relationship

+ Oz 2 2 Oz OT tl'llY Uo -- [tll'_O = RHS1, (2.5a)

where the precise form of RHS1 is given presently and c_ = ,_1_22 - ,:_/z21. A seCOlld

equation is derived by following a procedure similar to that described bv Bassom & Hall

(1991). By considering the second order terms in the g and z momentum equations

(2.3), eliminating tile pressure by cross-differentiation and applying the continuity

equation it is a routine but lengthy task to obtain

"J- OZ---_ -- --_--OZ_ OT [Zll_l-_-_ --_ _ Ib+a : \0t, l_y_ = RHSr:

(2._b/

where again we shall specify RHS2 shortly. The forms of 1RHS2 includes reference to

the combination W1 - 3UI which therefore needs to be expressed in terms of quantities

with subscript zero. This is best accomplished by integrating tile continuity equation

to give

w1 -_u, = 00 (_, y)- [ & + -_-yj d_-. (2.>,)

The aim of this article is to consider the nonlinear evolution of modes which are periodic
I

in the spanwise direction, with flmdamental wavenumber (\'0#121) _/¢ say, and periodic

in time. Now it is advantageous to introduce scalings first proposed by Bassom & Hall

(1991). It is found that if we transform according to

1 1 a I

k0 , 0_ +
I 3 1 2 2 4

UO = XO _1_1U', VO = k._)l.Z_l r', OT --+ k_#_,Or, (2.6d- f)

2_ 4_ _ _(#11#22 -- tt21lll2)

Oo = _a/-*_lO, a = , _ , (2.60 - h)
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then the transformed equations (2.5 a,b) are independent of the particularboundary

laver under consideration. Therefore the ensuing results are potentiallyrelevant to

;, wi,h' ,'lass of basic configurations. Ill this ,londimensionalised coordinate svstcnl

w,, restrict ourselves to flow quantities the flmdmnental mode having spanwise and

temporal variation given by exp [i(z + _)t)], so that f} represents the ll(mdimensional

fr,,q,u,ncy of tile flmdamental vortex component.

Upon making the transformations {2.6) tile leading order vortex equations (2.5

a.l_) become

(0_ 02 ) 2AOV g 02U 1 02S (1) 102S (2) 102S (3)L +_ l'+ k30z k30z2 - k 2 c%2 /,.20zc)g /,:a c)arc)g ' (2.7a)

L (U) 1:2 - S(3)"

where the operato," L is defined according to

(2.71,)

0 2,z, oq2,2, Ag 2 c3g, 1 Og, !1 6qg,

L [¢,]- cgV_ + Oz z k a Oz k 2 OT k a c)z' (2.7c)

alld

S(')=U-_-z +kl" . +k-_-z _-k [Oar + "--_yjdz +U",
2.7d)

sC_)=u b-7 _'- _- -87-.+ k oy J

+ v/`N _;- _ Loar + k ay j d= (2.7_)
1

Oar _ + k-o'z _ - k _ + :--ff-ffJ dz . (2.7f)

To complete the governing equations it is necessary to determine 0. This is achieved

by noticing that W1 -_':ff-rl satisfies

OP0
L (I'VI - ,5/U1) = a'_/I"}l -}- Tz + °0(2)

Identifying the component of this equation independent of z yields

27r

] 1/{ s 2,}0v 2 ka Oar _7
0

6



To closethe s,vstelll_ requires specification of appropriate boun_larv conditions. Chmrlv

we require the velocity components _'. I" to vmfish (m !/ = 0 !an,1 l_v contin, fitv _o

must 0I/0g). A(lditionally tile mean flow terms o = 0 on y = 0 aim in orrl,'r that

the distltrbanc, _ }_e confined to the lmundary layer we deman_l that the streamwisc

velocity [" tends to son:re flmction of .r ;is !¢ _ :x.

We notice that equations (2.7) are the apln'opriate _eneralisations of those s(_hcd

by Denier and Hall for the most unstable nonlinear vortex within a two _lim_q>i_mal

1Joundarv laver (their equations arc recovered by settin_ ]_ = o = 0 and settino_ 0r=0).

This allowed us to compare munerical results a_ainst their previously published om,s

as a check of our mmlerical methods.

!i3 Numerical Methods

The methods employed to soh'e system (2.7) are similar in essence to those used

in Denier k: Hall (1992). However it was found necessary to introduce a mmfl_er of

amendments to their code in order to speed up the computations which in turn had

the benefit of allowing an increased number of results to be obtained.

Denier & Hall (1992) solved the two-dimensional counterparts of equations (2.7)

as follows. They decomposed each of the flow velocities U, I',IV into their Fourier

components and rewrote the governing equations in terms of these components. By

utilising a scheme based upon that imt_lemented by Hall (1988) they obtained finite

difference equations for the mean flow and harmonic ternls. These equations contain

only one streamwise derivative and a straightforward method, based upon soh, ing one

tridiagonal and one pentadiagonal system, may be used to march the solution flom

one streamwise station to the next. For more details of the practicalities of the schenle

the reader is referred to Denier & Hall (1992).

One marked difference between our present work and that of Denier a: Hall ( 1992 )

is that we chose to calculate the nonlinear terms in physical space rather than trans-

form space, as this is a computationally 'cheaper' policy and so allowed us to retain

more modes in our calculations. This necessitates transforming from Fourier space

to physical space, effecting the calculations and extracting the Fourier coefficients. It

was decided to employ Fast Fourier Transforms to do this which has the benefit of

reducing the cost of the transformations from O(N '2), (the cost of reducing N modes

and using the Fourier transform directly) to O(SN log N - 6N). The code used was

based on the original Cooley and Tukey (1965) algorithm and was thus limited to N

being an integral power of 2.

Two other changes were made to the code used by Denier & Hall (1992). As

was described in the introduction, these authors were concerned vdth the development

of the most unstable GSrtler mode within a two-dimensional boundary laver. To

7



achieve this most unstable mode Denier & Hall (1992) took an arbitrary disturbs,nee
and then marched the linear stability equations for a long distancedownstreamb,,fore
changing to tile nonlinear system. This of coursehad the effect of ensuring that the
most unstable component of the original disturbance was then dominant over all the
other comt_onents so that when the fltll nonlinear equations were invoked tile input

vortex flow was dominated 1)y the most unstable mode. A drawback of this method

is that the lead-in time in which the linear mode develops proves to be a significant

proportion of the total computation time. To alleviate this ditficulty we used the

program described by Bassom & Otto (1992) to compute the unstable eigenflmction

directly. This had the effect of making the lead-in time to the nonlinear equations

redundant and thus we could start our computations of the full nonlinear system ahnost

immediately. Substantial reduction in the computational time was also achieved by

using a stretched grid in the y-direction (normal to the cylinder surface) as opposed

to a uniform one, and the scheme eventually chosen for this process was taken from

Macaraeg, Streett & Hussaini (1988). A grid is required which encompasses the region

between !/p = 0 and gp = g,,,_, where the subscript p denotes the physical coordinate

and g,,,,_ denotes some outer bound at which the asymptotic forms of the solution of

the system (2.7) are supposed to have been attained. A notional computational grid

0 _< .q_ _< 1 is introduced which is related to gp via

- 1)c,
gP = - g )C'

with the value (c2 - 1) taking values between 0.2 and 1. The quantity (c2 - 1) rep-

resents the degree of stretching between the large and small steps whilst cl controls

the rate of stretching, 1 _< Cl _< 6. For most of the calculations reported here we used

cl = 2.4 and c2 = 2 which allows 100 grid points to be distributed between gp = 0

and b'v = 50. The resulting distribution of points and the corresponding step lengths

are illustrated in figure 1. Notice that as g _ g,,,, the step lengths become greater

than unity which in a finite difference scheme may induce errors. In the present case

gradients of the dependent functions in this regime are minuscule and so this possible

difficulty did not arise. This particular non-uniform stretching of the grid points al-

lowed a twenty-fold reduction in the number of grid points over the regular grid used

in Bassom & Hall (1991) and a four-fold improvement over the piecewise constant step

length grid used in Bassom & Otto (1992).

As previously mentioned the solution strategy used here is essentially that de-

scribed in Hall (1988). Suppose that the solution (U0, Iv}),U0,, _b0) is known at some

specified station, z, and suppose further that a guess is made for the solution at x + e.

(, /0,)UI °) Vl (°), 01 . The nonlinear terms on the right-hand sides of equations (2.7 a,b)



were/,calculated,xusingtheseguessesand the system solvedto provide updated values
(['i 1), I1(1),0;1)). These ul, dated ,'ariations were then t,ut into the nonlinear t(,rms

and the process repeated. When tile difference between successive iterates was than

S()llle llOrlll ('Ollvergence "was (le('llle([ to have occurred and tills process Inarched onto

the next step. D)r a computational grid composed of kI points and a calculation with

.V modes retained then the convergence norm used was

k= N/2-1 ;=.xl

E ZIf,
k=--,\'/2 3-- 1

_ T-(,_) i (_-+-1)j k, + I_;- ,,,]- Ij!k I < 10-_-V-

T-(,_)
where _j.k denotes the _th iterate of the k th Fourier component of the flow quantity

U evaluated at tile jth .V position.

The equations (2.7 a,b) may be discretised for any particular mode into the forms

(lm Um -.b 2 .qL b m U,in ..k I -_- C m U m AV d m ?2in- 1 -_ _yrn t'm--2 + f,,, u ,, = V,,,,

a n d

(m =3,..-3I-1)

(3.1a)

This system was solved using a technique outlined in Appendix B of Bassom & Otto

(1992). This solves the problem (3.1) in one sweep rather than treating the pair (3.1

a,b) as distinct pentadiagonal and tridiagonal problems. In essence, tile equations are

solved by performing an outward forward elimination followed by a back substitution.

Earlier we alluded to the fact that significant computational saving was obtained

by utilising Fast Fourier Transforms in preference to decomposing the flow quantities

into their respective components. Standard procedures were implemented so that to

change between physical and transform spaces we write

k=_-
0i = Z _eik='' j E [1,N],

k_--_N
2

~ 1 j=N

_'_ = .\--r_ _'_-'_' _"El X X 11,' 2'2
)=1

where zj = 2rr(j - 1)/N for j 6 [1, N] and where quantities with tildes are in tile

transform space and those without in the physical space. Denier & Hall (1992) were

able to restrict themselves to using a cosine basis due to the nature of G6rtler vortices



with two-dimensional boundary layers but the addition of temporal periodicity ;_nd

crossflow prevented us from doing this.

F(_r the majority of the calculations presented below the nmnl_er of modes retain,,,1

was 16 and a fairly large step used in the streamwise direction, typically e = 0.01.

Denier & Hall (1992) found in their calculations that these lmrameter choices gav_,

results to within graphical accuracy. Further testing, using 100 points in th¢ _ normal

direction and with !],,,,,_ = 50 has confirmed that siinilar choices are satisfactory fl_r

the three dimensional comlmtations performed here.

!}4 Results

We have detailed the numerical method by which we investigated the solution

properties of system (2.7) although as yet we have left the definition of the amplitude

of the initial vortex unspecified. As described, we initiated our computations with a

multiple of the eigenfunctions of the linearised versions of system (2.7). For a specified

vortex wavenumber _', frequency ft and crossflow ._ the method outlined by Bassom

& Otto (1992) was used to compute the corresponding linearised growth rates 3r and

the respective eigenflmctions normalised so that the energy defined l)y

_=_(U 2 + I ''2)dg
=0

is equal to A 2. We refer to A as the amplitude of the initial condition.

Our first calculations were performed primarily as a verification of our code against

the established results of Denier & Hall (1992). Thence we considered the case of a

purely two-dimensional boundary layer and steady vortices (_ = ft = 0). Denier &:

Hall (1992) found that as the vortex evolves nonlinearly downstream then at some

point their computations broke down in a singularity. Careful investigation revealed

that at this location the skin friction was of the flow vanishes and then any solution

scheme which relies upon a marching technique becomes invalidated. The vanishing of

the skin friction was interpreted as being indicative of the vortices breaking away from

the wall and moving into the core of the boundary layer. Our results for various initial

amplitudes A are indicated on figure 2 where we show the location of the breakdown

point xb as a function of A for the most unstable GSrtler mode with vortex wavenumber

/_"= 0.476 (the disturbance was introduced at x = 1 so the distance travelled by the

perturbation before breakdown is x_ - 1). Not surprisingly, the breakdown location

xb is a monotone decreasing function of the amplitude A and as A _ 0 so x_ _

and the linear problem is retrieved. For all the other calculations reported upon here

a similar trend is observed so that in all cases we chose A = 0.2; this selection was

made purely for illustrative purposes and has no special significance whatsoever.

10



In figure 3 wedemonstrateanother featureof tile two dimensional results. Figure
3a indicates the dependenceof the linear vortex growth rate .:_ as a function ()f the
w)rtex wavenumber/c for the first two modes. As is now well documented t)v Denier

c¢ o,l. (1991), Denier & Hall (1992) the most unstal)le mode has growth rate ._ =

0.312 at /,_ = 0.476 and 3_ ---+ 0 as /c _ 0 or t" ---, ,3c. \\'e note however, that for a

significant range of scaled wavenumbers, roughly 0.3 < /," _< 0.S, the vortex growth

rate is not much reduced from the maximum in as nmch as it is at least 90_7_ of

the maximum. This will have important consequences for later results. Figure 3t_

illustrates breakdown point ,rh as a flmction of/,: for the first two modes. As is to l_e

expected for fixed initial amplitude 5 and fixed wavenumber the first mode ahvays

breaks away from the wall before the second one and this trend continues for higher

modes. However, it is also observed that for the primary mode, ,rb is a monotone

decreasing flmction of/_'. Therefore for any fixed initial aml)litude it is not the most

unstable mode which breaks up first. Indeed we previously remarked that for a whole

range of wavenumbers surrounding the most unstable value linear growth rates are not

too different from the largest, growth rate. This has potentially important consequences

for a number of practical flows as it demonstrates that the breakdown t)roperties of the

flow are crucially dependent on the nature of the physical characteristics of the flow

and are sensitive to the nature of the evolution of the flow. More precisely, suppose

that the vortex motion starts with extremely small amplitude. Then one would ext)ect

there to be a large distance over which the motion develops essentially ii!, a linear

manner. During this time the most unstable linear mode would overwhehn modes of

other wavelengths and once the vortices had grown suflaiciently so that nonlinearity is

important the flow behaviour would be dominated by that of the most unstable mode.

On the other hand if the initial vortex amplitude is not tiny, nonlinear effect are likely

to be important a relatively short distance downstream bv which stage it is unlikely

that the most unstable mode dominates the others. In this case the behaviour of the

most unstable vortex is not likely to dictate the properties of the breakdown of the

flOW'.

We turn now to consider cases with non-zero crossflows. As noted by Bassom

Hall (1991) we may restrict our attention to cases in which the crossflow parameter

> 0 since by suitably transforming the system (2.7) we can relate flows with A < 0

to appropriate counterparts with A > 0. In figure 4 we recall the results of increasing

crossflow on the linear, stationary vortex mode. As discussed in detail by Bassom

Hall (1991) the effect of crossflow on linear vortex structures of wavelength O(G-} ) is

primarily a stabilising one. Indeed figure 4 illustrates that when ,_ _> 0.410 the vortex

mode is stabilised for all wavenumbers in the O(G} ) regime.
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Figures 5 a& b show tile variations of the maximmn growth rate (/3r),,,,_ and
the corresponding vortex wavenumber k,,_,_ for increasing crossflow parameter A. As

already noted, increasing A lowers (3r),,,,_ and it is the mode with wavenumber t--_

0.407 which is the last to be stabilised. Further/c,,,_,_ is not a monotone flmction of _\

as might have been anticipated. Figure 5b, as well as showing (3_),,,_, indicates the

growth rate of the mode with wavenumber k = 0.476 (the value of l_',,,,, for the case of

zero erossflow). It can be seen that the difference in growth rates of the most unstable

mode and that with k = 0.476 is very small over the whole range of A considered.

This reinforces the earlier comment that there is a significant wavenumber regime over

which the linear growth rate of the vortex mode is almost constant.

For each crossflow ._ we integrated the appropriate most unstable linear eigemnode

with initial amplitude A = 0.2 until breakdown occurred, and then repeated the

experiment with vortex wavenumber t" = 0.476. The results are summarised in figure

5c. It is seen that as well as exercising a stabilising influence on the linear mode,

increasing the crossflow tends to have a similar effect on the nonlinear modes. Clearly

the greater A, the greater the delay downstream before the initially most unstable

mode breaks away from the wall. Additionally, for the same initial amplitude A and

crossflow A the mode with k = 0.476 breaks up before the linearly most unstable mode.

Further investigations have suggested that for all choices of _ and vortex frequency

f) then if two linear modes of different modes kl > k_ are such that if initially have

the same amplitude then if they are marched downstream then it is the one with the

higher wavenumber which breaks down first.

Finally, we discuss in more detail the influence of unsteadiness on our findings. In

their study Bassom & Hall (1991) made some comments concerning the properties of

time-dependent linearised vortices. For the majority of their work these authors were

primarily interested in examining neutrally stable modes although they did compute

a few non-neutral ones (see their figure 16). Bassom & Otto (1992) showed that for

fixed wavenumber k then as the frequency _) of the mode increases so the crossflow

required to maintain neutral stability grows. In particular it was shown that for a

non dimensional vortex frequency _ the stability properties of the vortex are sensitive

to the sign of _. In figures 6 a& b we illustrate a facet of this sensitivity. For each

frequency ft and crossflow parameter _ we show the wavenumber of the most unstable

linear mode, km_,, together with the growth rate of that mode (_),,,_,. For ft < 0, it

it is observed that as A increases from zero so k,,_, decreases whereas for f) > 0 this

is not the case. Correspondingly, when ft < 0 the growth rate of the most unstable

mode is monotone decreasing in A whereas when _ > 0 then as A increases from zero so

there is a crossflow range over which (j3_),_,_x increases. This increase is not indefinite

however and there is a critical A, dependent upon f), after which the growth rate

12



\ / % /

so that over all _ and all X > 0 the mode with the greatest growth rate is stationary

and exists in a two-dinlensional boundary laver.

Tile breakdown characteristics of unsteady flows are described by figure 6c. For

each frequency Q and _ we marched the linearly most unstable mode of amplitude

= 0.2 from ,r = 1. We can observe the sonlewhat conflicting roles played l_y

crossflow and frequency.

In the main, for a prescribed _ increasing _ delays breakdown whereas for fixed

and increasing _ this phenomenon is enhanced. Notice, however, one important

feature which runs against this general rule. For positive _ then a small to moderate

crossflow actually tends to promote breakdown although larger crossflows do reverse

this effect. An attempt was made to veri_" this trend by considering larger values of

Q than those illustrated in figure 6. However problems were encountered as Q grew

and these difficulties can be attributed to a number of causes. Following on from work

elucidated in Bassom &: Hall (1991) it is the case that for small crossflow the most

unstable linear mode frst has a small wavenumber relative to the implied scaling. As

grows then the most unstable mode corresponds to an eigenfunction that moves away

from the wall at _/ = 0. At _ greater than about '2_this movement occurs quickly for

small changes in _ so that for quite moderate values of _ the eiegnmode is far removed

from the boundary. As found both by Bassom & Hall (1991) and Bassom & Otto

{1992) the numerical solution of the governing equations becomes non trivial as the

vortex moves out since boundary conditions need to be imposed at the wall. Clearly

for modes concentrated away from the wall large changes in /}, _ or _ can lead to

almost imperceptible changes in the values of the eigenfunctions at the wall and thus

reliable numerical convergence is rendered very difficult. However, our limited fllrther

computations for _ > 1.5 are in agreement with the general behaviour described above.

§5 Conclusions & Discussion

In this work we have detailed the nonlinear spatial evolution of unstable G6rtler

modes in a three-dimensional boundary layer. In particular, the roles played by vortex

wavenumber, frequency, and the crossflow component of the underlying base flow haw"

been described. We feel that of particular importance is our finding that ( all other

factors being equal) of two modes of wavenumber within the O(G}) regime the one

with the smaller wavelength will be the first to breakdown. This then suggests that in

practical situations it may not be the most unstable linear nlode which is of ultinlate

importance.

In many cases the relevant calculation to describe the breakdown of a flow is one

of a receptivity type. In this scenario small disturbances within the boundary layer

13



or on the wall of the cylinder can trigger Ggrtler vortices and the precisemethod
of this triggeriug frequently excitesmodes of a preferred wavenumber. If this occurs
in practice then our calculations provide a description of the evolution of the mode'.

Conversely, if a range of wavenumber modes is excited two eventualities would seem to

be possible. First, suppose that the initial disturbance is very small. Then it is to be

expected that the perturbation travels a long way downstream before nonlinearity has

significant effect, the most unstable linear mode will be dominant before this point and

its evolution characteristics will essentially describe that of the whole flow. Second.

suppose that the initial perturbation is not so small. Our results summarised by figure

3 have shown that although there is a unique most unstable mode for each crossflow ]\

and frequency t) vortices with wavenumbers in a fairly-large region surrounding that

of the most unstable mode have growth rates not very different from the nmximum.

Therefore, by the time nonlinearity is significant it is not clear that the most unstal,le

mode would be donfinant and the breakdown characteristics of the whole flow would

involve calculations more involved than those reported here. However we have shown

that for given mode amplitude it is the higher-wavenumber modes which appear to

breakdown first so that these components of a spectrum of excited modes may well

prove to be the important ones.

Denier & Hall (1992) showed that when their calculations for nonlinear modes in

two-dimensional boundary layers terminated, this corresponds to the skin friction of

the flow vanishing at some point. Once this happens marching schemes as used both

here and in Denier & Hall (1992) cannot be continued. We confirm this finding for

our three-dimensional cases as well but we also observed that before the skin friction

vanishes the velocity profile develop inflection points at positions away from the wall.

The appearance of those inflection points suggest that the flow will become susceptible

to Rayleigh waves which would give an alternative route to the ultimate breakdown.

The analysis of these modes would be of interest.

Finally, we recall that all our calculations have been concerned with considering

the evolution of perturbations of a specified wavenumber. Of course in some situations

a spectrum of modes may well be present. We have identified situations in which we

might expect one mode to dominate the others before nonlinearity sets in but in the

other cases calculations would be needed which account for an initial perturbation

which contains a number of modes. The development of a code to perform such calcu-

lations might well be formidable but it would give the definitive theoretical description

of nonlinear G/Srtler vortex behaviour in three-dimensional boundary layers.
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a) Linear vortex growth rates _ as a flmction of wavenumber k for tlle two most

dangerous modes in a tv_'o-dimensional boundary layer.

b) Breakdown point Xb as a flmction of wavenumber k for the modes in figure 3a with

assmned initial amplitude A = 0.2. The symbols denote corresponding points on the

curves of a) and b).
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Figure 5:

a) Wavenumber of the most unstable stationary mode and b) its corresponding growth

rate as a function of crossflow _.

c) Breakdown point zb as a function of crossflow X for i) the most unstable mode and

ii) the mode with k = 0.476 for initial amplitude A = 0.2.
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Figure 6:

a) Wavenumber of the most unstable nonstationary modes and b) corresponding

growth rates _r as functions of _. Here we have considered _ = -1, 0.5, 0, 0.5, 1, 1.5.

c) Breakdown point xb as a function of crossflow A for the modes with frequencies

and wavenumbers k as given in figure 6a) and initial amplitude/k = 0.2.
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